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Frozen and active regions in diffusion-limited aggregation clusters
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This paper is devoted to the study of the properties of the diffusion-limited aggregdiof) and
diffusion-limited depositiofDLD) clusters, both in the frozen and in the active zones. First, we show that the
angular distribution in the frozen zone of a DLA aggregate, defined from the normalized distance between
branches, obeys a “multifractal” statistics: this result is compared to the hole size distribution in the triadic
Cantor setdiscontinuous distribution Second, our interest focuses on the tip effect in the external active zone.
Measures concern the evolution of the condensation height as well as the position of the free particles diffusing
in the fjords versus the distance to the tips. In both cases, the laws obtained depend on one parameter only,
and ¢, in the DLD casega, and a,, for DLA clusters.[S1063-651X96)04305-X

PACS numbdss): 68.70+w, 05.40:+j, 64.60.Cn

[. INTRODUCTION will be compared to the triadic Cantor set. The normalized
hole size distribution of the latter set is studied fifSig. 2).

The fractal structure§1] generated by the diffusion- The gth-order moment$/1(q,N), at theNth iteration of the
limited aggregatior(DLA) method proposed by Witten and fractal set, are defined by
Sander[2] are representative of a great variety of physical
clusters[3—7]. Schematically, two regions can be distin-
guished in such aggregatésg. 1): the internal frozen zone
where the free particles never come, and an external active
zone where new particles stick. The sticking probability dis- ) ,
tribution p(i), associated to each site labeledn contact and p(j,N)=ladj,N)/A(N), @
with the growing cluster, is multifractdB].

In the first section of this paper, the frozen zone of smallwhere N, represents the number of holds,{j,N) is the
on-lattice DLA clusters is statistically analyzed: each clustefength of thejth empty holex (N)=3N—2N is the total hole
contains 10 particles and, for such a scale, on-lattice andlength (3" is the set length at stefN), and p(j,N) is the
off-lattice clusters do not present noticeable differeri@®s probability associated to thigh hole at the stef\.

In this zone, the relevant parameter is not the condensation We use here the classical notations for a “multifractal”
probability on each cluster site8] (the diffusing particles analysis to describe this well-known pure fractal set, i.e., the
cannot visit this regionbut another set of probabilities cor- exponentr, which represents the self-similar behavior of the
responding to the sizes of the empty spaces betweeg-order moments:

branches. This set of probabilities is equivalent to an angular

distribution. Using the fact that the dimension of an azi- M(q,N)=e™ with e=3"N. (2a)
muthal section of the DLA cluster is close to the Cantor set

dimension(In2/In3), this angular distribution is compared to )

the normalized hole size distribution associated to the triadic active zone frozen zone

Cantor set.

In the second part, we consider the active zone and the tip
effect is quantitatively evaluated for DLA and diffusion-
limited deposition(DLD). The evolution of two representa-
tive variables, related to the tip effect, is measured versus the
distance to the tipt ,—r Or hy,.—h: the condensation rate
on the clusterR., and the penetration rate into the fjords,
I[?p.] R. is compared to the sticking probability defined in
10].

Ny
M(g,N)=>, p(j,N)9, with Ny=2"—1
=1

II. “MULTIFRACTAL” PROPERTIES
OF THE FROZEN ZONE

A. Cantor set

The intersection between the frozen zone of DLA aggre-

gates and circles of radius centered on the original seed, FIG. 1. Active and frozen zones of a DLA cluster.

1063-651X/96/58)/51065)/$10.00 53 5106 © 1996 The American Physical Society



53 FROZEN AND ACTIVE REGIONS IN DIFFUSION-LIMITED. .. 5107

N=0 Tq
2 4
N=1 —_— ey et ——na
P(j,1): 1 -
N=2 _— —— — e
P(j,2): 15 315 15 6 L DLA case
------ Cantor set case
N=3 — — [ — — — — —
P(j,3): 119 319 119 919 119 319 119 -10 ' X > q
. o . . @ 8 -4 0 4 8
FIG. 2. Normalized hole size distribution associated with three
iterations of a triadic Cantor set. i
Applying the classical Legendre transformdoand 7, we 0.8 1
obtain the exponentas andf(a) [8,11,12:
°® .0:.\
0.6 t °®
a(q)=d74/dqg, f(a)=qa—r74. (2b) o
[ ]
@
The analytical expressions of these functions can be easily 04 + &
obtained in the self-similar limiN—oo: In the large scale 02 / OLA
i — 21 . case
domain, forq>qg, qo=In 2/In 3, + Cantor set case
7,=0, a(q)=0, and f(a)=0, 3 0 } f o
a (@ (a) (33 o O 04 08 12" ¢
in the small scale domain, fay<qq,
7q=0q—do, a(q)=1, and f(a)=0q. (3b) FIG. 4. (@) 7, versusq diagrams forg e[ —7,7] representative of

the angular distribution in the frozen zone of DLA clusters and of
It is easy to understand why tHi€éx) function is limited to  the normalized hole size distribution in the Cantor set céBe.(«)
two points only. The exponentsandf(a) are, respectively, versusa (q) curves for the Cantor set and the DLA clusters.
associated with the probability distributiqr(e) of the hole

sizes at theNth iteration step, and with the corresponding B. DLA clusters

. _aa o . . . .
hole numbeN.: D(S)st(aa)fggl\lﬁﬁws . In the Cantor We study the angular distribution in the frozen zone of
casep=3" " andNgy=3 : DLA aggregates. 10clusters containing TOparticles are

For scales larger thag i.e., at an iteration step<N, in  pecessary to obtain accurate results. First, the evolution of

the limit N—<, the statistical weighp of the holes created e arc mean length and the standard deviatioare mea-
at thenth iteration of the Cantor set is independenfbéind  syred wherr increases. The momen¢&(q,r)) and o are

converges towards the constant valué 8thenN converges  efined as follows(L(1r)) is the arc mean length
towards infinity. On the other hand, the number of these

holes of size 3" remains unchanged wheN increases. N1 1 Nl
These two conditions imply that andf are equal to zero in (LanN)== 2 ——— > ludin% (4a
e Ni =1 No(iyr) =1
the limit g<qp.
For the smallest scalp~3~"N implies a=1. At each it- 12
eration step, the number of smallest holes is multiplied by a o(r)=[(L(2r))—(L(1r))“]" (4b)
factor 2 and their size is divided by a factor 3; thienln2/
In3. N, is the number of aggregates ahy is the number of

branchegor the number of holg®f theith cluster at a given
radiusr. | ;. is the length of thgth azimuthal section, in the
2 1 |—log,,© ith cluster, at a given radius

A self-similar behavior, corresponding to the frozen zone,
is clearly obtained in Fig. 3, over about one decade, between
r=20 and 200. This result shows that clusters containirfg 10
particles are sufficient to display scaling laws. The exponents
associated with (L(1r)) and o are, respectively,
B1=0.4+0.02(=2-D¢) and8,=0.69+0.02. This last expo-
nent is representative of a wide length scale distribution.

0.5 : | > We also compute the momenkd(q,r), defined as fol-
1 1.4 1.8 22 lows:
log, , (radius)
Ny Np(i,r)
FIG. 3. Radius dependency of the mean hole size and standard M(q,r)= N, igl jgl p(j,r)=e, ()

deviation for DLA aggregates.
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_ ) FIG. 6. Sticking rateslope: a;=10) for the DLA clusters.
FIG. 5. Sticking rate(slope: a;=7.2) and penetration rate

(slope:a,=6.8) for the DLD clusters. sets displayed if8,11,13 and for our DLA aggregates: all

the probabilities obey power laws and tend to zero in the
fractal limit. This measure allows us to differentiate various
sets of the same fractal dimension.

with p(j,r)=I4dj,r)/\(r) and e=1/r in the DLA case,
A\(r) being the total hole length at a radiusThe moments
M(q,r) are equivalent to the analytically calculated mo-
ments of the Cantor séfl(q,N).

Respectively, Figs. (4) and 4b) represent the behaviors lll. TIP EFFECT IN DLA AND DLD CLUSTERS
of the exponentsr, (for g varying from =7 to 7, by 0.1
step$, and f(a) versusa(q); they are compared with the
Cantor set results plotted in the same figures. This approa
provides useful results about the angular distributions in[he
DLA clusters.

In the two linear regions of they curves the angular
distribution presents a simple fractal structure, i.e., we ¢

This section is devoted to the statistical measure of the tip
ffect in the active zone of the DLD and of the DLA clusters.
0 parameters representative of this effect can be defined:
sticking rate onto the aggregak,, and the penetration
rate into the fjordsR,. R; andR,, are computed as follows.
For each cluster built, a given number of particldk, are
. . aunched one by one. The condensation height and the posi-
define a gap exponed, allowing us to deduce, from 7,_, tion at each diffusing step in the lacuna are, respectively,

by the linear relationry=7q_,+A. Adis similarto the gap = o0q1deq inR, and R,. After condensation, each particle is
scaling presentgd by critical phenomena where it is given b¥emoved in order to keep the cluster unchangedand R
successive derivatives of the free energy. P

. . . d d the dist to the t —h (DLD
The negative values af (q=]—=,~0.4] and in the simu- r ep(inr (IngiA ((:aaslés aBr;/C((aief(i)nitign lﬁmax anofr r(e:?)fssg;t
lation —7 is identified with—<) enhance the contribution of ™ : ' max max

likel _ I dina to th i ¢ the tip of the smallest cluster given by the statistic. These
uniikely reg|o_ns(sma arcs corresponding to thé Most acute ;. ations are done over 1000 clusters containing 8000 and
angles: the linear curve, versusq is linear with a gap

10* particles in the DLD and the DLA cases, respectively. In
exponent,A_,.=a_,=1.15, close to the Cantor set value b P y

(A_,=1). This exponent is simply characteristic of the Figs. 5 and 6Rs and R, are obtained by addition and re-

: - e moving of 1000 particles to each aggregate: so the sample is
branching condition when the cluster size increases: the ar g D dgoreg b

length of the smallest holes being independent of the radiu Gone over 18x10° additional particles. In our figures, only

. v . . the domains located below the lintit, . and r o are con-
ltggdzstzcc)(mat_ef probability is proportional ¢e-1/r, which sidered. The measures performed in the DLD case, for the

; . two sample size& =50 and 100, lead to the following ex-
A major difference between the Cantor set and the DLAponentiaI laws(Fig. 5);

clusters appears in the large domain, hereq>1.6. The
largest angular sector contribution decreases with the radius: ~ _ _
p~r A+= with A,.=a,.=0.24(in the Cantor set case, Re~exil — as(Nmaxh)/L], (63
remains constant\, .= a, ., =0).

In the simulation results, the nonlinear region gf is
limited to a narrow interval off: Aq (qe[—0.4,1.4, Aq= . _ _ . -
2). Aq gives information on the angular distribution of the with a;=7.2, close t02,=6.8, L being the characteristic
fractal sets. From the various articles devoted to the muIti—Iength' .
fractal analysiqsee, for exampld,8,11,17), it appears that For_ DLA aggregates, the decreasmg laws .take a more
Aqg and the probability distribution spreading are related ascomplllcated f(;)rm(Flgs. goand 4 Fc;;;fil(; Ia:jsdt'flgur?, the
follows: to a wide angular distribution corresponds a Sma"ﬁ:;?g?g;;rgf dci)f?:rgxtersize:ggrega additional par-
value forAq. In our case, one can consider tideg is small '
(equivalent to a wide distributionin comparison with the

Ro~exf — ap(Nmac /L], (6b)

transition domains of the multifractal sets displayed in Rs~extl — ag(Nma—1)/1], (7a)
[8,12]. The Cantor set is representative of a limiting case
where Aq does not exist: the probabilities associated with Ro~exf — ap(Mmax—1)/1], (7b)

the holes created at a given iteration of the fractal set tend to
a constant value under iterations. This is not the case for theith ;=10 anda,=21.
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r. These two power laws imply that,, decreases faster than
rlogR N, during the penetration process, thRp decreases faster
4000% thanRg, which involvesa </, . For the deposition clusters
the preceding effect coming from the polar geometry of a
DLA cluster does not exist: the suly+ N+ N, is equal to
a constantL (=2#r in the DLA case,N, represents the
number of aggregate siledHowever, the number of fjord
and sticking sites weakly depends @n,,,—h) because the
measurements are made on the lower part of the active zone.
Then, we can consider that;=«, andR,~R;.
0 ] ‘ ] ot ot From a numerical point of view, the penetration param-
0 o5 50 75 100 ™ eters are measured with higher precision than the condensa-
tion one(see Figs. 5-J7 the sampling is done over the stick-
ing sites only in the condensation case and over all the sites
FIG. 7. Penetration ratéslope:a;,=21) in DLA aggregates for  Visited by diffusion in the penetration case.
nine different cluster size\. : each curve corresponds to a given  Another interesting question concerns tigdependency
value of N, varying from 4000(the lowest curveto 20 000(the  on thea,, aF’J, anda parameters. In the deposition problem,
highest curvg by step of 2000 particles. We only represent thethe statistics displayed in Fig. 5 is figured far from the seed.
region situated near the tips, corresponding to a large sample. |n this domain, the tip of the cluster and thasremain un-
. . . changed wherN. (or h) increases. On the other hand, a
It is interesting to compare these results to the previoug; iictical analysis is necessary to measure Nhedepen-
works con(_:e_:rning the active zone of th? D_LA CIUSter_S_ anddency of the two slopes associated to the DLA aggregates.
more specifically, to comparg; to the sticking propab|l|t_y The penetration rate is displayed in Fig. 7 for nine cluster
P(r,N.), whereN, represents the number of particles in asizes(40 aggregate of each sizeN,, varies between %10°
DLA cluster. A Gaussian Igyv, obtaine_d by an average oveL 4 ox 10t particles by X10° stecp. A sample of %10"
the total number of additional partlcle_s, was foun_d_ byadditional particles is used for each cluster dies sample
Plischke and Racf10] to represent the sticking probability. s g fficient to obtain accurate slopes f®g). From this last

Tht'; tf]|str|but_|on IS cfetnhtered 3” thet_radm,geg, ;ls_tsoc_;_ar\]tedb simulation, it appears clearly tha, does not depend dN .
Wi € maximum ot Ihe condensation probability. 1h€ De-rpo giatistics associated wit, and not shown here pro-

. ; , ] )
havllors, in the’ ijrméxha?]d tger<rmax dforrr:altr)\s, arﬁ, resgec— vides the same results. The linear domains displayed in Figs.
tively, associated with the decrease of the branch number angl 7 e iy fact independent of &, or anr ., translation.

with the tip effect. Their measures of the standard deviatiori:rom this last part, we can conclude that the tip effect is

associated td(r,N,) lead to the relationship~N ¢ with : : ,
v=0.48. Remaining in the Gaussian law hypothesis, Subsec_haracterlzed by the parametersn the DLD cases, and

guent extensive simulations have shown that the exponent a for DLA aggregates.

depends o\, (v—1/D; in the limit N,—o) [13] and that

other corrections must be added to the standard deviation

[14]. In spite of these simulations, the asymptotic behavior of IV. CONCLUSION

the active region is still uncleqt5]. Owing to our definition The first part of this article was devoted to the study of the
Of I max, the statistics associated wil (Fig. 6) corresponds  jnner regions of the DLA aggregates and particularly to the
to the domainr <rma<rpay Of P(r,Nc). The tip effect, in-  comparison  between  the  triadic  Cantor  set
cluded inP(r,N,), is characterized by Eqél) and(2): these (b, =In2/In3=0.63 and the azimuthal cut of the frozen re-
relations throw back into question the Gaussian law Progions of the DLA clusterdD=0.65. The “multifractal”
posed in[10]. _ analysis associated with the angle distributi@iA) and
Some remarks can be made about these relations. For th@th the normalized hole size distributigCantor setwere
deposition problem?, andR; both obey an exponential law performed in order to reveal the differences between these
of same slopesy, a=as=ay; for the DLA problem, two g sets which have roughly the same fractal dimension: In
laws of same form are obtained fét, and Ry with two  the DLA (Cantor setcase, an angléhole) is associated with
different SIOpeS'aé< a) . As for the depOSition and for the each cluster Sitﬁo each Occupied Segmén]rhe major dif-
aggregation problem, relatiori$) and(2) imply that there is  ferences between these two distributions come from the large
a Iarge correlation between the paths in the lacunas, Charaﬁng|e(ho|e) contributions: for the DLA aggrega’[e{@antor
terized byR,,, and the sticking heights, characterizedRy.  sep, the probabilities associated with the largest angfles
The path followed by a diffusing particle in the fjords repre- |argest holesobey a power law and tend to zefto nonzero
sent the history of the condensation process which explaigonstantsin the fractal limit. In a general way, the method
the correlations obtained betweBy andR;. presented in this article could be applied to numerous fractal
A comparison between the decreasing of the number oiggregates such as the polymers, in the limiR,, (gyration
condensation sites\g (related toR), and the number of radiug, the percolation clusters near threshold, or the crystal
fiord sites,NH (related tORp), versus the distance to the tip growth aggregates, for examp|e_ In the second part, two gen-
can qualitatively explain the two relationas=«, and a; eral laws(for the DLA and the DLD aggregatesepresenta-
<aF'). For the DLA aggregates, the polar geometry impliestive of the tip effect were obtained both in the penetration
that Ny and N, are, respectively, proportional t¥1~! and  and in the sticking cases. Moreover, the simulations have

3000
2000

1000

/////
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shown that the parametets a,’), anda;, are independent ACKNOWLEDGMENTS

of the cluster sizes. Each of these laws is characterized by

one parameter only. Finally, it is interesting to note that these We are very pleased to thank J.-M. Debierre and R. Jul-
laws are also obtained for anisotropic ramified clusfeg.  lien for useful discussions.
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