
Frozen and active regions in diffusion-limited aggregation clusters
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This paper is devoted to the study of the properties of the diffusion-limited aggregation~DLA ! and
diffusion-limited deposition~DLD! clusters, both in the frozen and in the active zones. First, we show that the
angular distribution in the frozen zone of a DLA aggregate, defined from the normalized distance between
branches, obeys a ‘‘multifractal’’ statistics: this result is compared to the hole size distribution in the triadic
Cantor set~discontinuous distribution!. Second, our interest focuses on the tip effect in the external active zone.
Measures concern the evolution of the condensation height as well as the position of the free particles diffusing
in the fjords versus the distance to the tips. In both cases, the laws obtained depend on one parameter only,as

andap in the DLD case,as8 andap8 for DLA clusters.@S1063-651X~96!04305-X#

PACS number~s!: 68.70.1w, 05.40.1j, 64.60.Cn

I. INTRODUCTION

The fractal structures@1# generated by the diffusion-
limited aggregation~DLA ! method proposed by Witten and
Sander@2# are representative of a great variety of physical
clusters @3–7#. Schematically, two regions can be distin-
guished in such aggregates~Fig. 1!: the internal frozen zone
where the free particles never come, and an external active
zone where new particles stick. The sticking probability dis-
tribution p( i ), associated to each site labeledi in contact
with the growing cluster, is multifractal@8#.

In the first section of this paper, the frozen zone of small
on-lattice DLA clusters is statistically analyzed: each cluster
contains 104 particles and, for such a scale, on-lattice and
off-lattice clusters do not present noticeable differences@9#.
In this zone, the relevant parameter is not the condensation
probability on each cluster site@8# ~the diffusing particles
cannot visit this region! but another set of probabilities cor-
responding to the sizes of the empty spaces between
branches. This set of probabilities is equivalent to an angular
distribution. Using the fact that the dimension of an azi-
muthal section of the DLA cluster is close to the Cantor set
dimension~ln2/ln3!, this angular distribution is compared to
the normalized hole size distribution associated to the triadic
Cantor set.

In the second part, we consider the active zone and the tip
effect is quantitatively evaluated for DLA and diffusion-
limited deposition~DLD!. The evolution of two representa-
tive variables, related to the tip effect, is measured versus the
distance to the tip:rmax2r or hmax2h: the condensation rate
on the cluster,Rc , and the penetration rate into the fjords,
Rp . Rc is compared to the sticking probability defined in
@10#.

II. ‘‘MULTIFRACTAL’’ PROPERTIES
OF THE FROZEN ZONE

A. Cantor set

The intersection between the frozen zone of DLA aggre-
gates and circles of radiusr , centered on the original seed,

will be compared to the triadic Cantor set. The normalized
hole size distribution of the latter set is studied first~Fig. 2!.
The qth-order momentsM (q,N), at theNth iteration of the
fractal set, are defined by

M ~q,N!5(
j51

NH

p~ j ,N!q, with NH52N21

and p~ j ,N!5 l arc~ j ,N!/l~N!, ~1!

whereNH represents the number of holes,l arc( j ,N) is the
length of thej th empty hole,l(N)53N22N is the total hole
length ~3N is the set length at stepN!, and p( j ,N) is the
probability associated to thej th hole at the stepN.

We use here the classical notations for a ‘‘multifractal’’
analysis to describe this well-known pure fractal set, i.e., the
exponenttq which represents the self-similar behavior of the
q-order moments:

M ~q,N!5«tq with «532N. ~2a!

FIG. 1. Active and frozen zones of a DLA cluster.
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Applying the classical Legendre transform toq and tq , we
obtain the exponentsa and f ~a! @8,11,12#:

a~q!5dtq /dq, f ~a!5qa2tq . ~2b!

The analytical expressions of these functions can be easily
obtained in the self-similar limitN→`: In the large scale
domain, forq.q0, q05ln 2/ln 3,

tq50, a~q!50, and f ~a!50, ~3a!

in the small scale domain, forq,q0,

tq5q2q0 , a~q!51, and f ~a!5q0 . ~3b!

It is easy to understand why thef ~a! function is limited to
two points only. The exponentsa and f ~a! are, respectively,
associated with the probability distributionp~e! of the hole
sizes at theNth iteration step, and with the corresponding
hole numberNeff : p~«!'«a andNeff'«2 f (a). In the Cantor
casep532aN andNeff53f (a)(N21).

For scales larger thane, i.e., at an iteration stepn,N, in
the limit N→`, the statistical weightp of the holes created
at thenth iteration of the Cantor set is independent ofN and
converges towards the constant value 32n whenN converges
towards infinity. On the other hand, the number of these
holes of size 32n remains unchanged whenN increases.
These two conditions imply thata and f are equal to zero in
the limit q,q0.

For the smallest scalep'32N implies a51. At each it-
eration step, the number of smallest holes is multiplied by a
factor 2 and their size is divided by a factor 3; thenf5ln2/
ln3.

B. DLA clusters

We study the angular distribution in the frozen zone of
DLA aggregates. 103 clusters containing 104 particles are
necessary to obtain accurate results. First, the evolution of
the arc mean length and the standard deviations are mea-
sured whenr increases. The moments^L(q,r )& and s are
defined as follows~^L(1,r )& is the arc mean length!:

^L~q,r !&5
1

N1
(
i51

N1 1

N2~ i ,r ! (
j51

N2~ i ,r !

l arc~ j ,r !q, ~4a!

s~r !5@^L~2,r !&2^L~1,r !&2#1/2. ~4b!

N1 is the number of aggregates andN2 is the number of
branches~or the number of holes! of the i th cluster at a given
radiusr . l arc is the length of thej th azimuthal section, in the
i th cluster, at a given radiusr .

A self-similar behavior, corresponding to the frozen zone,
is clearly obtained in Fig. 3, over about one decade, between
r520 and 200. This result shows that clusters containing 104

particles are sufficient to display scaling laws. The exponents
associated with ^L(1,r )& and s are, respectively,
b150.460.02~>22Df! andbs50.6960.02. This last expo-
nent is representative of a wide length scale distribution.

We also compute the momentsM (q,r ), defined as fol-
lows:

M ~q,r !5
1

N1
(
i51

N1

(
j51

N2~ i ,r !

p~ j ,r !q5«tq, ~5!

FIG. 2. Normalized hole size distribution associated with three
iterations of a triadic Cantor set.

FIG. 3. Radius dependency of the mean hole size and standard
deviation for DLA aggregates.

FIG. 4. ~a! tq versusq diagrams forqP@27,7# representative of
the angular distribution in the frozen zone of DLA clusters and of
the normalized hole size distribution in the Cantor set case.~b! f ~a!
versusa (q) curves for the Cantor set and the DLA clusters.
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with p( j ,r )5 l arc( j ,r )/l(r ) and «51/r in the DLA case,
l(r ) being the total hole length at a radiusr . The moments
M (q,r ) are equivalent to the analytically calculated mo-
ments of the Cantor setM (q,N).

Respectively, Figs. 4~a! and 4~b! represent the behaviors
of the exponentstq ~for q varying from 27 to 7, by 0.1
steps!, and f ~a! versusa(q); they are compared with the
Cantor set results plotted in the same figures. This approach
provides useful results about the angular distributions in
DLA clusters.

In the two linear regions of thetq curves the angular
distribution presents a simple fractal structure, i.e., we can
define a gap exponentD, allowing us to deducetq from tq21
by the linear relationtq5tq211D. D is similar to the gap
scaling presented by critical phenomena where it is given by
successive derivatives of the free energy.

The negative values ofq ~qP#2`,20.4# and in the simu-
lation27 is identified with2`! enhance the contribution of
unlikely regions~small arcs! corresponding to the most acute
angles: the linear curvetq versusq is linear with a gap
exponent,D2`5a2`>1.15, close to the Cantor set value
~D2`51!. This exponent is simply characteristic of the
branching condition when the cluster size increases: the arc
length of the smallest holes being independent of the radius,
the associated probability is proportional to«51/r , which
leads toa2`51.

A major difference between the Cantor set and the DLA
clusters appears in the largeq domain, hereq.1.6. The
largest angular sector contribution decreases with the radius:
p'r2D1`, with D1`5a1`>0.24 ~in the Cantor set case,p
remains constant:D1`5a1`50!.

In the simulation results, the nonlinear region oftq is
limited to a narrow interval ofq: Dq ~qP@20.4,1.6#, Dq>
2!. Dq gives information on the angular distribution of the
fractal sets. From the various articles devoted to the multi-
fractal analysis~see, for example,@8,11,12#!, it appears that
Dq and the probability distribution spreading are related as
follows: to a wide angular distribution corresponds a small
value forDq. In our case, one can consider thatDq is small
~equivalent to a wide distribution! in comparison with the
transition domains of the multifractal sets displayed in
@8,12#. The Cantor set is representative of a limiting case
whereDq does not exist: the probabilities associated with
the holes created at a given iteration of the fractal set tend to
a constant value under iterations. This is not the case for the

sets displayed in@8,11,12# and for our DLA aggregates: all
the probabilities obey power laws and tend to zero in the
fractal limit. This measure allows us to differentiate various
sets of the same fractal dimension.

III. TIP EFFECT IN DLA AND DLD CLUSTERS

This section is devoted to the statistical measure of the tip
effect in the active zone of the DLD and of the DLA clusters.
Two parameters representative of this effect can be defined:
the sticking rate onto the aggregate,Rs , and the penetration
rate into the fjords,Rp . Rs andRp are computed as follows.
For each cluster built, a given number of particles,N, are
launched one by one. The condensation height and the posi-
tion at each diffusing step in the lacuna are, respectively,
recorded inRs andRp . After condensation, each particle is
removed in order to keep the cluster unchanged.Rs andRp
depend on the distance to the tip,hmax2h ~DLD case! or
rmax2r ~DLA case!. By definition,hmax and rmax represent
the tip of the smallest cluster given by the statistic. These
simulations are done over 1000 clusters containing 8000 and
104 particles in the DLD and the DLA cases, respectively. In
Figs. 5 and 6,Rs andRp are obtained by addition and re-
moving of 1000 particles to each aggregate: so the sample is
done over 1033103 additional particles. In our figures, only
the domains located below the limithmax and rmax are con-
sidered. The measures performed in the DLD case, for the
two sample sizesL550 and 100, lead to the following ex-
ponential laws~Fig. 5!:

Rs'exp@2as~hmax2h!/L#, ~6a!

Rp'exp@2ap~hmax2h!/L#, ~6b!

with as>7.2, close toap>6.8, L being the characteristic
length.

For DLA aggregates, the decreasing laws take a more
complicated form~Figs. 6 and 7!. For this last figure, the
statistics are done over 40 aggregates~43104 additional par-
ticles only! of different sizes:

Rs'exp@2as8~rmax2r !/r #, ~7a!

Rp'exp@2ap8~rmax2r !/r #, ~7b!

with as8>10 andap8>21.

FIG. 5. Sticking rate~slope: as>7.2! and penetration rate
~slope:ap>6.8! for the DLD clusters.

FIG. 6. Sticking rate~slope:as8>10! for the DLA clusters.
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It is interesting to compare these results to the previous
works concerning the active zone of the DLA clusters and,
more specifically, to compareRs to the sticking probability
P(r ,Nc), whereNc represents the number of particles in a
DLA cluster. A Gaussian law, obtained by an average over
the total number of additional particles, was found by
Plischke and Racz@10# to represent the sticking probability.
This distribution is centered on the radiusrmax8 , associated
with the maximum of the condensation probability. The be-
haviors, in ther.rmax8 and ther,rmax8 domains, are, respec-
tively, associated with the decrease of the branch number and
with the tip effect. Their measures of the standard deviation
associated toP(r ,Nc) lead to the relationships'Nc

n with
n>0.48. Remaining in the Gaussian law hypothesis, subse-
quent extensive simulations have shown that the exponentn
depends onNc ~n→1/Df in the limit Nc→`! @13# and that
other corrections must be added to the standard deviation
@14#. In spite of these simulations, the asymptotic behavior of
the active region is still unclear@15#. Owing to our definition
of rmax, the statistics associated withRs ~Fig. 6! corresponds
to the domainr,rmax,rmax8 of P(r ,Nc). The tip effect, in-
cluded inP(r ,Nc), is characterized by Eqs.~1! and~2!: these
relations throw back into question the Gaussian law pro-
posed in@10#.

Some remarks can be made about these relations. For the
deposition problem,Rp andRs both obey an exponential law
of same slopesa, a5as>ap ; for the DLA problem, two
laws of same form are obtained forRp and Rs with two
different slopes:as8,ap8 . As for the deposition and for the
aggregation problem, relations~1! and~2! imply that there is
a large correlation between the paths in the lacunas, charac-
terized byRp , and the sticking heights, characterized byRs .
The path followed by a diffusing particle in the fjords repre-
sent the history of the condensation process which explain
the correlations obtained betweenRp andRs .

A comparison between the decreasing of the number of
condensation sites,Ns ~related toRs!, and the number of
fjord sites,NH ~related toRp!, versus the distance to the tip
can qualitatively explain the two relations:as>ap andas8
,ap8 . For the DLA aggregates, the polar geometry implies
thatNs andNH are, respectively, proportional tor D f21 and

r . These two power laws imply thatNH decreases faster than
Ns during the penetration process, thenRp decreases faster
thanRs , which involvesas8,ap8 . For the deposition clusters
the preceding effect coming from the polar geometry of a
DLA cluster does not exist: the sumNs1NH1Na is equal to
a constant:L ~52pr in the DLA case,Na represents the
number of aggregate sites!. However, the number of fjord
and sticking sites weakly depends on~hmax2h! because the
measurements are made on the lower part of the active zone.
Then, we can consider thatas>ap andRp'Rs .

From a numerical point of view, the penetration param-
eters are measured with higher precision than the condensa-
tion one~see Figs. 5–7!: the sampling is done over the stick-
ing sites only in the condensation case and over all the sites
visited by diffusion in the penetration case.

Another interesting question concerns theNc dependency
on theas8 , ap8 , anda parameters. In the deposition problem,
the statistics displayed in Fig. 5 is figured far from the seed.
In this domain, the tip of the cluster and thusa remain un-
changed whenNc ~or h! increases. On the other hand, a
statistical analysis is necessary to measure theNc depen-
dency of the two slopes associated to the DLA aggregates.
The penetration rate is displayed in Fig. 7 for nine cluster
sizes~40 aggregate of each size!: Nc varies between 43103

and 23104 particles by 23103 step. A sample of 43104

additional particles is used for each cluster size~this sample
is sufficient to obtain accurate slopes forRp!. From this last
simulation, it appears clearly thatap8 does not depend onNc .
The statistics associated withas8 and not shown here pro-
vides the same results. The linear domains displayed in Figs.
5–7 are in fact independent of anhmax or anrmax translation.
From this last part, we can conclude that the tip effect is
characterized by the parametersa in the DLD case,ap8 and
as8 for DLA aggregates.

IV. CONCLUSION

The first part of this article was devoted to the study of the
inner regions of the DLA aggregates and particularly to the
comparison between the triadic Cantor set
~Df5ln2/ln3>0.63! and the azimuthal cut of the frozen re-
gions of the DLA clusters~Df>0.65!. The ‘‘multifractal’’
analysis associated with the angle distribution~DLA ! and
with the normalized hole size distribution~Cantor set! were
performed in order to reveal the differences between these
two sets which have roughly the same fractal dimension: In
the DLA ~Cantor set! case, an angle~hole! is associated with
each cluster site~to each occupied segment!. The major dif-
ferences between these two distributions come from the large
angle ~hole! contributions: for the DLA aggregates~Cantor
set!, the probabilities associated with the largest angles~the
largest holes! obey a power law and tend to zero~to nonzero
constants! in the fractal limit. In a general way, the method
presented in this article could be applied to numerous fractal
aggregates such as the polymers, in the limitr,Rg ~gyration
radius!, the percolation clusters near threshold, or the crystal
growth aggregates, for example. In the second part, two gen-
eral laws~for the DLA and the DLD aggregates! representa-
tive of the tip effect were obtained both in the penetration
and in the sticking cases. Moreover, the simulations have

FIG. 7. Penetration rate~slope:ap8>21! in DLA aggregates for
nine different cluster sizes,Nc : each curve corresponds to a given
value ofNc , varying from 4000~the lowest curve! to 20 000~the
highest curve!, by step of 2000 particles. We only represent the
region situated near the tips, corresponding to a large sample.
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shown that the parametersa, ap8 , andas8 , are independent
of the cluster sizes. Each of these laws is characterized by
one parameter only. Finally, it is interesting to note that these
laws are also obtained for anisotropic ramified clusters@16#.
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